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Abstract: A methodology is proposed for estimating furrow infiltration under time-variable ponding depth. The methodology approximates
the solution to the two-dimensional Richards equation, and is a modification of a procedure that was originally proposed for computing
infiltration under constant ponding depth. Two computational approaches were developed and tested using several combinations of soil
hydraulic properties, furrow geometry, and flow depth variations. Both methods yielded solutions of reasonable and similar accuracy relative
to numerical solutions of the two-dimensional Richards equation. The analysis also showed that the accuracy of the approximate model varies
mostly as a function of soil hydraulic properties. The accuracy of the approximate solution can be improved with calibration. Two calibration
methods were examined, one assuming that the calibration parameter varies with depth, and the other assuming a constant value. The analysis
showed that latter approach, in combination with one of the proposed computational methods, reproduced the Richards equation solution
more accurately. This means that a unique calibration parameter can be developed for the particular soil and geometric configuration
conditions, and applied to different patterns of ponding depth variation. DOI: 10.1061/(ASCE)IR.1943-4774.0001057. © 2016 American
Society of Civil Engineers.

Introduction

The WinSRFR software package and other modeling tools for sur-
face irrigation systems currently predict furrow infiltration using
empirical formulations. The standard computational approach used
by WinSRFR assumes that infiltration is given by a power law, de-
pendent on infiltration opportunity time only and independent of
flow depth and geometry. The software offers other alternatives,
which assume that infiltration is still a function of opportunity time
but proportional in some way to wetted perimeter. None of these
methods account for the effect of pressure head on infiltration
or initial soil water content (i.e., boundary and initial conditions).
Empirical infiltration equations can be calibrated from field irriga-
tion measurements and can probably generate reasonable infiltra-
tion and irrigation performance estimates if flow depths and
opportunity times along the field are relatively uniform, such as
with short furrows. However, opportunity times and flow depths
tend to vary substantially along the run in long fields. Under those
conditions, empirical furrow irrigation modeling is likely more
unrealistic.

Several studies (e.g., Wohling et al. 2006; Banti et al. 2011) have
proposed computing furrow infiltration in surface irrigation models
using the two-dimensional Richards equation (Richards 1931;
Warrick 2003). In the first author’s opinion, such an approach is
currently of limited value for practical irrigation studies, first be-
cause of the substantial computational time required by the numeri-
cal solution of the 2D Richards equation. More importantly, those
coupled numerical solutions can exhibit convergence and mass bal-
ance problems. A computationally simpler and robust method is
needed for practical studies, especially when considering that an
irrigation analysis may potentially involve dozens or hundreds
of simulations.

Warrick et al. (2007) proposed a furrow infiltration formulation
based on approximate solution to the 2D Richards equation

I2DðtÞ
W� ¼ I1DðtÞ þ

γS2t
W · ðθs − θ0Þ

ð1Þ

where I2D = cumulative infiltration volume per unit length of
furrow (L2), calculated at a constant ponding depth h; I1D =
one-dimensional cumulative infiltration (L); t = time at which in-
filtration is calculated; γ = empirical parameter (−), calibrated from
an infiltration time series simulated with the Richards equation;
W� = empirical adjusted wetted perimeter (L), calibrated from
the same infiltration data as γ; W = wetted perimeter (L); θs and
θ0 = saturated and initial water content (−), respectively; and S =
soil sorptivity (L=T0.5).

Eq. (1) was derived from an expression developed for analyzing
disk infiltrometer measurements (Smettem et al. 1994; Haverkamp
et al. 1994) and later adapted to analyze infiltration from a strip
source (Warrick and Lazarovitch 2007). The key premise behind
all of these formulations is that for a given infiltration surface,
the difference between infiltration volume per unit area and the cor-
responding one-dimensional infiltration [I2D=W� − I1D in the case
of Eq. (1)], is a linear function of time. The difference, referred to as
the edge effect (Warrick et al. 2007), corresponds to water that in-
filtrates primarily through the process of absorption. This concept is
supported by experimental observations (Smettem et al. 1994) and
also by comparison of simulated infiltration computed with the
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two-dimensional and one-dimensional Richards equations
(Warrick and Lazarovitch 2007; Warrick et al. 2007).

Warrick et al. (2007) noted that the ponding depth used for I1D
calculations, identified in this article as h1D, must be less than h,
because h varies along the wetted perimeter of the furrow. Hence,
they set h1D ¼ hc, where hc is the center of mass of the flow cross
section measured from the furrow bottom (hc). The depth h1D was
also used to calculate soil sorptivity, using an expression developed
for ponded water conditions (Haverkamp et al. 1988)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ks½θs − θ0Þðh1D − hfÞ�

q
ð2Þ

where Ks = saturated hydraulic conductivity [L=T]; and hf = soil
water pressure head at the wetting front [L]. If the KðhÞ relationship
for a soil is known, then hf can be determined, as the hydraulic
conductivity-weighted average of the soil water pressure head
(Bouwer 1964)

hf ¼
Z

0

h0

KðhÞ
Ks

dh ð3Þ

With this parameterization, Warrick et al. (2007) calibrated the
parameters γ and W� by fitting Eq. (1) to infiltration results gen-
erated with the HYDRUS 2D/3D program (Šejna et al. 2012). The
I1DðtÞ contribution was calculated with HYDRUS-1D (Šimůnek
et al. 2013). Simulations were conducted with different combina-
tions of soil hydraulic properties [based on the van Genuchten
(1980) soil hydraulic model], furrow flow depth, furrow geometry,
the ratio of furrow depth to flow depth, and initial water content.
Their analysis confirmed the linearity of the edge effect with time
when calculated from simulated furrow irrigation data. The coef-
ficient of determination of the linear regression line (R2) computed
for all of their tests was better than 0.998. For the range of con-
ditions that they examined, they determined values for γ between
0.5–1.3, and between 0.8–1.3 for W�=W.

Bautista et al. (2014b) compared simulated infiltration from fur-
rows and strips, with the strip width equal to the furrow wetted
perimeter. The ponding depth for the strip calculations was deter-
mined from the furrow ponding depth, using the centroid depth as
in Warrick et al. (2007) but also using the wetted perimeter-
averaged depth hw

hW ¼
R
W ½h − ζðχÞ�dsR

W ds
ð4Þ

In this expression, ζðχÞ is the vertical coordinate of a point
along the wetted perimeter as a function of the transverse coordi-
nate χ. For a trapezoidal furrow with bottom width B0 and side
slope SS, the expression simplifies to

hW ¼ ðh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SS2

p
þ hB0Þ

W
ð5Þ

with

W ¼ 2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SS2

p
þ B0 ð6Þ

Furrow and strip calculations were in closer agreement when
using hw than with hc. In view of these results, these authors sim-
plified Eq. (1) by setting W� ¼ W and conducted then additional
calibration tests with h1D ¼ hw. As with Warrick et al. (2007), γ
varied with different soils and boundary conditions, but the range
of variation was narrower for a given soil, especially when the ab-
solute magnitude of hf was large relative to hW .

Eq. (1) was developed assuming a constant ponding depth h.
However, in furrow irrigation systems h is a function of distance

and time, i.e., at any particular location along the length of run, h
rises from zero to a maximum value and gradually returns to zero.
Hence, Bautista et al. (2014a) proposed a modification to Eq. (1), to
account for time-variable ponding depth hðtÞ. That formulation
generated reasonably accurate results under the limited set of soil
and flow conditions under which it was tested. This study further
examines this problem, proposes an alternative formulation, and
examines the problem of calibrating the parameter γ under variable
depth conditions.

Methodology

Approximate Solutions for Variable Ponding Depth

To facilitate the discussion, the approximate furrow infiltration
model Eq. (1) is rewritten as

Ii2D ¼ Zi
k þ Ei

k ð7Þ
where Z denotes an estimator of the one-dimensional infiltration
contribution; E = estimator of the edge effect ε; the superscript
i = discrete time index; and the subscript k identifies a computa-
tional method. Several computational methods will be tested as part
of this analysis. The edge effect is redefined as an infiltrated volume
per unit length, i.e., as

εik ¼ Ii2D − Zi
k ð8Þ

Hence, when h is fixed, and with the modifications proposed by
Bautista et al. (2014b)

W� ¼ W ð9Þ

Zi ¼ Zi
1 ¼ Ii1D · W ð10Þ

Ei ¼ Ei
1 ¼

γS2ti

ðθs − θ0Þ
ð11Þ

In what follows, computational method EZ1 will refer to the
calculation of I2D with Eqs. (10) and (11).

There are three difficulties in adapting Eqs. (10) and (11) to
cases with time-dependent h. First, although a variable h can be
easily incorporated into the calculation of I1D, S, and W, the func-
tions Z1 and E1, and therefore their sum, are guaranteed to increase
monotonically with time only when h is constant or increasing.
Thus, these functions need to be modified to ensure that the I2D
increases when h is decreasing.

Second, as was noted earlier, the linearity of the edge effect has
been established for cases where h is constant. A variable h can be
expected to make the edge effect less linear but the magnitude of
that effect is unknown. This provides some flexibility in defining
the Zk function, but a matching Ek function must then be defined
based on the same assumptions used to develop Z. One factor that
was considered when examining alternatives for Zk was its effect
on the evolution of the edge effect relative to total infiltration, εR

εR ¼ 1 − Z
I2D

ð12Þ

When h is constant, εR increases with time but levels off at long
times. This follows from the derivative of Eq. (1)

d
dt

�
I2D
W�

�
¼ dI1D

dt
þ γS2

W · ðθs − θ0Þ
ð13Þ
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in which the first term gradually decreases (but converges to Ks for
long times) while the second is constant. This development hy-
pothesizes that εR evolves similarly when h is variable as when
h is constant. This would seem a reasonable assumption, especially
when h is decreasing with time, as those are conditions where the
relative contribution of Zk to total infiltration should decrease.

The last difficulty is the determination of γ. Prior results
(Warrick et al. 2007; Bautista et al. 2014b) suggest that γðhÞ is
an increasing function for small values of h, and then becomes rel-
atively constant or may even decrease for larger values of h. If γ
depends only on the particular depth at a given time, but is inde-
pendent of the history of depth variations, then a γðhÞ function can
be constructed for the particular soil, furrow geometry, and initial
conditions, and then applied to hydrographs of any shape. Because
γðhÞ tends to vary within a relatively narrow range, a constant value
may suffice for practical calculations. This would greatly facilitate
the calibration process not only from HYDRUS 2D/3D simulation
results but also from field measured infiltration, a case in which γ
would be subsumed in the value of Ks. However, if γ depends on
the history of depth variations, i.e., if γ is unique to each particular
hðtÞ and is substantially different from values generated at constant
h, then alternative calibration procedures need to be developed.

Two computational alternatives for handling time-variable h are
proposed. The first, identified here as method ZE2, accounts for
the changes in h and W during the time interval Δti ¼ ti − ti−1
(Bautista et al. 2014a), where the superscript i is a discrete time
index. These wetted perimeter changes are assumed to impact both
Z and E. The Z component is calculated as

Zi
2 ¼ Zi−1

2 þΔZi
2 ð14Þ

in which

ΔZi
2 ¼ ΔIi1D · Wi

a ð15Þ

ΔIi1D ¼ Ii1D − Ii−11D ð16Þ
and

Wi
a ¼

Wi þWi−1
2

ð17Þ

The upper boundary conditions used to calculate I1D is the hW
time series calculated from the specified h time series. Likewise,Wi

is a function of hi and the furrow geometry.
The proposed expression for the edge effect, is

Ei
2 ¼ Ei−1

2 þΔEi
2 ð18Þ

in which

ΔEi
2 ¼

γðSi2Þ2Δti

ðθs − θ0Þ
Wi

a

Wi
r

ð19Þ
and

Si2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KsðhiWa − hfÞðθs − θ0Þ

q
ð20Þ

In Eq. (19) the ratio of Wi
a to the running average of the wetted

perimeter Wi
r is used to give greater weight to the edge effect con-

tribution when W is increasing during a time step and less weight
when W is decreasing. Wi

r is given by

Wi
r ¼

1

ti

Z
ti

0

Wdt ð21Þ

or for discrete time increments

Wi
r ¼

1

ti

Xi

k¼1

Wk
a · Δtk ð22Þ

The S2 term can be computed by averaging the hw values over
the time interval Δti, as done in Eq. (20) (with hiWa the average
value), or by averaging the S values. The resulting E values are
essentially the same.

The previously described approach is guaranteed to produce a
monotonically increasing infiltration function [because Eqs. (14)
and (18) always result in positive values]. It yielded reasonably
accurate results during initial testing (Bautista et al. 2014a), but
problems were noted when applied to a wider range of examples.
In some cases, the approximation initially underpredicts and
later overpredicts the HYDRUS 2D/3D solution, or vice versa,
and the errors are of similar magnitude. In those cases, calibration
improves the accuracy of the approximation only slightly. Thus, a
second alternative, identified as computational method ZE3, was
developed.

That alternative uses running averages for the calculation of the
Zk and Ek terms and assumesW�=W ¼ 1, thus ignoring the effects
of wetted perimeter variations on lateral infiltration. The Zk term is
calculated with

Zi
3 ¼ Ii1D · Wi

r ð23Þ

This function can decrease with time when the water is receding
because of the contribution of Wr. While this problem was not ob-
served with any of the tests presented in this study, additional com-
putational tests were conducted to identify conditions leading to
that problem. Those tests revealed that the function Z3 can decrease
when hðtÞ is strongly and positively skewed (the falling limb of the
hydrograph extends over a much longer time than the rising limb).
While such a hydrograph is unlikely to be observed under typical
irrigation conditions, an error condition needs to be raised during
execution if calculations are affected by declining Z3 values.

Two separate expressions were developed for the calculation of
Ek, the first of which is

Ei
3 ¼

γðSi3Þ2ti
ðθs − θ0Þ

ð24Þ

in which sorptivity is calculated with a running average of hW , hiWr,

Si3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KsðhiWr − hfÞðθs − θ0Þ

q
ð25Þ

As with Eq. (23), the running average term, hWrðtiÞ, can poten-
tially lead to decreasing values when h is decreasing and the hydro-
graph is strongly skewed to the right. Nevertheless, and as will be
shown later, this formulation in combination with Z3, can produce
some improvements relative to computational method ZE2 if γ is
constant. However, it performs inadequately if used in combination
with a depth-dependent γ. Hence, the following modified form of
E3 was also tested:

E3ðtiÞ ¼ E3ðti−1Þ þΔE3ðtiÞ ¼ E3ðti−1Þ þ
γðhÞS3ðtiÞ2Δti

ðθs − θ0Þ
ð26Þ

Hence, in the following analysis, the method ZE3 will refer to
Eqs. (23) and (24) when using a constant γ, and Eqs. (23) and (26)
when using a depth-dependent γ. Table 1 summarizes the equations
used with all three proposed computational methods.

© ASCE 04016045-3 J. Irrig. Drain Eng.

 J. Irrig. Drain Eng., 2016, 142(11): -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

A
R

IZ
O

N
A

,U
N

IV
E

R
SI

T
Y

 O
F 

on
 0

1/
30

/1
7.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Testing

The proposed formulations were evaluated using several combina-
tions of soil hydraulic properties, furrow geometry, and ponding
depth variations. Table 2 summarizes the soil hydraulic and furrow
geometry characteristics of each scenario. The scenarios include
soils described with the van Genuchten (vG) and the Brooks
and Corey (1964) (BC) hydraulic models. For soils where the listed
source is Rosetta, parameters were derived with the Rosetta Lite 1.1
program (Schaap 2003), using the soil textural class option. For
those examples, a BC scenario was created for a texturally similar
soil. Note that those scenarios, for example 2 and 3, do not corre-
spond to the same soil. This is not the case for two sets of scenarios,
11, 12, and 13, 14. In those cases, the published vG parameters
were converted to BC parameters using the approach of Morel-
Seytoux et al. (1996). That method matches the wetting front pres-
sure hf of the original and converted hydraulic models. These sce-
narios were included to illustrate the effect of soil hydraulic model
on the predicted infiltration and the resulting calibration parameter.

The soil parameters given in Table 2 are: θr = residual volumet-
ric water content; θ0 = initial water content; α = parameter of the
water retention curve; n = parameter of the water retention curve;
and θs,Ks, and hf are as previously defined. The effect of geometry
(identified in the table under the Geom column) was tested using
only two configurations, a narrow (N) and a wide trapezoidal fur-
row (W). The bottom width (B0) and side slope (SS) were set equal
to, respectively, 0.15 m and 1.0 [H/V] for the narrow furrow, and
0.1 m and 2 for the wide furrow.

Each scenario of Table 2 was evaluated in combination with
three ponding depth hydrographs, which were defined as follows.
The approximate solution based on the computational method ZE2
(with γ ¼ 1), was programmed into SRFR, the simulation engine
of WinSRFR, but with the one-dimensional infiltration component

calculated with the Green-Ampt formula (Green-Ampt 1911),
modified to handle time-varying depth (Warrick et al. 2005). A
WinSRFR simulation scenario was developed for each soil and
geometry combination. The details of the length, slope, roughness,
inflow rate, and cutoff time are not particularly important and are
not given here. However, all simulations were conducted using a
low gradient, blocked-end furrow, in order to produce substantial
flow depths variations with distance and time. (With sloping-free
draining furrows, near-normal depth generally is attained quickly).
Moreover, for each irrigation simulation, the inflow rate and cutoff
time were selected to produce an average infiltrated volume of
0.1 m3=m (a 10 cm average infiltrated depth assuming a 1 m furrow
spacing), but with some variation in the final infiltration distribu-
tion along the field. This limits the infiltration tests to volumes
typically applied with furrow systems. Hydrograph sets similar
to those shown in Fig. 1 were developed for each test. The figure
shows the hydrograph computed at the upstream end (H1), the
middle (H2), and the downstream end (H3) of the field for
Test 1. With the last hydrograph, h never reaches a steady-state.

An exception to the previously described procedure were the
hydrographs developed for scenarios 12 and 14. Because scenarios
11 and 12 represent in principle the same soil, the depth hydro-
graphs developed for the vG scenario 11 were also used with sce-
nario 12. Likewise, the depth hydrographs for the vG scenario 13
were used with the BC version of that test, scenario 14. As ex-
plained previously, of interest in this study is to compare simulated
infiltration with the same soil but described with a different model,
and subject to the same boundary conditions.

HYDRUS 2D/3D was used to generate the I2D infiltration time
series corresponding to each flow soil, geometry, and depth hydro-
graph combination. A 2 × 2 m computational domain was used for
all simulations, with the finite-element size defined automatically
by the software. A refinement was inserted on the furrow perimeter,
again with the element size defined automatically. The number of
nodes and finite elements was close to 2,100 and 4,100, respec-
tively, with both geometries. All simulations used a variable head
upper boundary condition, no flow on the sides, and free drainage
at the lower boundary. A soil water tension of −1,000 cm was as-
sumed as initial condition. ZE2 and ZE3 solutions were calculated
for each of these tests, at selected values of time. The HYDRUS 1D
software was used to calculate the I1D infiltration series needed by
the approximate solutions. These calculations used a 2 m computa-
tional domain, and a default discretization scheme (100 elements).
More details about the HYDRUS setup are provided in Bautista
et al. (2014b).

Table 1. Summary of Equations Used with Each Computational Method
for Variable Ponding Depth

Computational
method Component Equations

ZE1 Z1 Eq. (10)
E1 Eq. (11)

ZE2 Z2 Eqs. (14)–(16)
E2 Eqs. (18)–(20), and (21)

ZE3 Z3 Eq. (23)
E3 (for constant γ) Eqs. (24) and (25)

E3 (for depth dependent γ) Eqs. (25) and (26)

Table 2. Soil and Geometric Properties for the Test Scenarios

ID Soil texture Soil model Source θr (−) θs (−) α (1=cm) n Ks (cm=min) hf (cm) Geom

S1 Casa Grande sandy loam vG Abbasi et al. (2004) 0.065 0.407 0.0689 1.3700 0.04 2.30 N
S2 Loamy sand vG vG-Rosetta 0.049 0.390 0.0347 1.7466 0.073 9.33 N
S3 Loamy sand BC Rawls et al. (1982) 0.035 0.437 0.1150 0.4740 0.10183 12.35 N
S4 Sandy clay BC Rawls et al. (1982) 0.109 0.430 0.0343 0.1680 0.002 48.43 W
S5 Sandy clay loam vG vG-Rosetta 0.063 0.384 0.0211 1.3298 0.00916 6.54 N
S6 Sandy clay loam BC Rawls et al. (1982) 0.068 0.398 0.0356 0.2500 0.00717 43.95 N
S7 Silty clay vG vG-Rosetta 0.111 0.481 0.0162 1.3207 0.00667 8.23 W
S8 Silty clay BC Rawls et al. (1982) 0.056 0.479 0.0292 0.1270 0.0015 58.91 W
S9 Silty clay loam vG vG-Rosetta 0.090 0.482 0.0084 1.5202 0.00772 27.55 N
S10 Silty clay loam BC Rawls et al. (1982) 0.040 0.471 0.0307 0.1510 0.0025 54.99 N
S11 Berino loamy fine sand vG Hills et al. (1991) 0.083 0.321 0.0182 1.5083 0.18833 12.43 N
S12 Berino loamy fine sand BC Hills et al. (1991) 0.083 0.321 0.1120 0.5083 0.18833 12.66 N
S13 Glendale clay loam vG Hills et al. (1989) 0.106 0.469 0.0104 1.3940 0.00912 16.44 W
S14 Glendale clay loam BC Hills et al. (1989) 0.106 0.469 0.0884 0.3940 0.00912 16.29 W

© ASCE 04016045-4 J. Irrig. Drain Eng.
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Approximate solutions were compared with the I2D simulation
results, first with γ ¼ 1, and later with calibrated γ values. Agree-
ment between HYDRUS 2D/3D and approximate model results
were evaluated using the root mean squared error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðOi − PiÞ2

m

r
ð27Þ

where O represents an observation (in this case, a HYDRUS 2D/3D
simulated value); P = predicted value (computed with method ZE2
or ZE3); and m = number of data pairs.

Results

Relationship between ε and E

Figs. 2 and 3 examine the effect of the Z2 and Z3 functions on the
edge effect ε ¼ I2D − Z, and the relationship between ε and the
corresponding uncalibrated (γ ¼ 1) E functions. This analysis is
performed using scenario S1 and two of the hydrographs from
Fig. 1, H1 and H3. For comparison purposes, ε was calculated also

with method ZE1. Hence, in that case the average h was used to
calculate first I1D and W in Eq. (10), and then the value of S
required by Eq. (11). The left plot in each figure shows the time
series ε1 ¼ I2D − Z1, ε2 ¼ I2D − Z2, and ε3 ¼ I2D − Z3 whereas
the right plot illustrate the corresponding E functions. The linear
regression coefficient of determination (R2) for each series is given
in Table 3. Also given in the table is the RMSE calculated between
each ε and E pair (which is also the RMSE value computed
between I2D and [Z þ E]).

As expected, Z1 produced the most nonlinear ε functions and,
consequently, the smallest R2 and, consequently, the largest
RMSE values. Z2 and Z3 linearized εðtÞ with both examples, more
strongly with the latter method as can be observed in the graphs,
although the R2 was only slightly greater. The resulting RMSE
values were less than 10 cm2. As will be shown later, this is an
exceptional group of tests as the RMSE for the uncalibrated func-
tion can be substantially greater for other soils.

Relative edge effect time series were computed with functions
Z2 and Z3 (Fig. 4). They are identified in the figure as εR2 and εR3,
respectively, with the left hand side graph showing the results for
the test with hydrograph H1 and the right with H3. The graph also
shows the relative edge effect calculated using a constant h, εR1. In
those cases, I2D and I1D were calculated with final average values
of h and hw, respectively (with Z1 still computed using the average
W). As was previously explained, because the derivative of E1 is a
constant, εR1 gradually increases and levels off at very long times,
as shown by corresponding plots. The εR series computed with Z3

emulated this behavior more closely than the one computed with
Z2. In fact, when Z2 was used for the computations, the slope of the
εR function eventually changed sign, which is difficult to observe
from the scale of the graph. These results could be interpreted as
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Fig. 1. Ponding depth hydrographs developed for scenario S1
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Fig. 2. Edge effect (ε) and estimator of the edge effect (E) computed
for Example 1 (S1-H1)
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Fig. 3. Edge effect (ε) and estimator of the edge effect (E) computed
for Example 2 (S1-H3)

Table 3. Performance of the Computational Methods ZE1, ZE2, and ZE3
for Tests S1-H1 and S1-H3

Test Indicator

Computational method

ZE1 ZE2 ZE3

S1-H1 R2 0.972 0.996 0.999
RMSE (cm2) 37.9 4.0 3.9

S1-H3 R2 0.942 0.990 0.998
RMSE (cm2) 69.8 6.5 6.4
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meaning that the edge effect is the same whether the ponding depth
is constant or variable. If that is the case, then the function Z3

should the preferred computational approach. However, both the
Z2 and Z3 functions in combination with their corresponding E
functions produced, ultimately, similar RMSE values. This could
mean that the slope of the relative edge effect function is unimpor-
tant or could be just a characteristic of this particular group of tests.
Of interest then is to determine if method ZE2 can produce an εR
function that is even more negatively sloped under other soil,
geometry, and boundary conditions, and if so, if that behavior com-
promises the accuracy of the calculations. The following section
will present additional results to further examine this issue.

While method ZE1 generated the least accurate approximation,
it can produce reasonable results under some conditions. For the
test conducted with the H1 hydrograph, h attained near normal
depth conditions in the first 25 min, rose again very gradually after
200 min due to backwater effects, and then dropped rapidly after
cutoff. As a result, the average depth was nearly 80% of the peak
value. This is reflected in the resulting ε function (Fig. 2, solid line),
which varied near linearly until cutoff time, but became strongly

nonlinear after that time. These results suggest that the ZE1 com-
putational method, in combination with final average values for W
and S, can deliver reasonable predictions with free-draining fur-
rows on a relatively steep field-bottom slope. Those are conditions
under which near steady-state flow would be achieved rapidly at
any point along the furrow. It is important to note that even when
producing reasonable results, use of method ZE2 or ZE3 would be
preferable over ZE1 in combination with an irrigation simulation
model. That is because latter method requires prior knowledge of
the average final average depth as a function of distance down the
field and that information is s an output of the simulation.

Performance of the Uncalibrated ZE2 and ZE3
Computational Methods

Fig. 5 is a boxplot of the computed RMSE values for all tests. The
data are grouped by soil and computational method, with the ZE2
results displayed in white boxes and ZE3 results in gray boxes.
Results are also grouped by soil hydraulic model, with vG soils
(1, 2, 5, 7, 9, 11, 13) shown on the left half of the graph and
BC soils (3, 4, 6, 8, 10, 12, 14) on the right. Clearly, soil is the
factor that contributed the most to the variation in RMSE. Unlike
the examples presented in the previous section where the RMSE
were less than 10 cm2 (1% of the target infiltration volume) for
the tests associated with scenario S1, the average RMSE for all tests
was 30 cm2 and was as large as 90 cm2 for soil S13. Tests con-
ducted with different hydrographs for each soil produced, mostly,
similar RMSEs. Likewise, for each individual test (soil and hydro-
graph combination), the two computational methods produced
RMSEs of similar magnitude. Results do not suggest that one
method is consistently more accurate than the other, as RMSEs
computed with method ZE2 were greater than those computed with
ZE3 for some soils, but smaller for other soils. The average RMSE
for each computational method is shown in the figure legend in
parentheses.

The lme4 library (Bates et al. 2015a) of the R statistical software
package (R Core Team 2015) was used to conduct a linear mixed
model analysis of the RMSE values. The primary objective was to
confirm that RMSE values are not affected by the computational
method, i.e., that both computational methods, without calibration,
yield equally accurate results. A secondary objective was to evalu-
ate the contribution of the various factors considered in this
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Fig. 4. Relative edge effect calculated for Examples 1 and 2
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Fig. 5. Boxplot of RMSE values computed with the uncalibrated computational methods. van Genuchten soils are shown on the left and Brooks-
Corey soils on the right side of the graph
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analysis to the performance of the approximate furrow infiltration
model. Because many soil (Soil) and hydrograph (Hyd) scenarios
are possible, these factors were treated as random effects. In prin-
ciple, many furrow geometry (FG) configurations are possible but
the analysis was limited to only two shapes, thus this factor was
treated as a fixed effect, as were soil hydraulic model (SHM),
and computational method (CM). The analysis assumed a random
intercept with fixed mean for each random factor. Using the R soft-
ware notation, the statistical model is

RMSE ∼ SHM þ CM þ FGþ ð1=SoilÞ þ ð1=HydÞ þ e ð28Þ

where e is the error term.
Tables 4–6 present the linear mixed model analysis results. Soil

explains much of the variation in RMSE values (Table 4). The stan-
dard deviation (SD) associated with the soil factor was about twice
the SD associated with the residuals while the SD of the hydro-
graph factor was less than half. In Table 5, the fixed factor analysis,
the column labeled Estimate gives the intercept of the linear model
and the slope for each of the fixed factors. Because the factors are
categorical, the slope is the change in RMSE between categories for
that factor. The largest change in RMSE was due to furrow geom-
etry, which is indicated by the notation FGW, which implies that the
intercept is associated with the narrow furrow category and that the
slope represents the change from the narrow to the wide category.
For this factor, RMSE increased by 21.7 cm2 with wide furrows in
comparison with narrow ones. In contrast, the RMSE changed the
least due to computational method, on average a 3 cm2 increase
with method ZE3 relative to ZE2 as indicated by the line CMZE3
(which implies that the intercept applies to the computational
method ZE2).

The statistical significance of the fixed factors was evaluated
using the likelihood ratio test (Pinheiro and Bates 2000; Bates et al.
2015b), which consists of an analysis of variance that compares a
proposed statistical model [in this case, the model represented by
Eq. (28)] against a reduced version of that model [i.e., Eq. (28)
without one of the SHM, CM, or FG factors]. The ANOVA function
of the lme4 library was used for this analysis. This test has one
degree of freedom, which is the difference in the number of stat-
istical parameters estimated with each model. The Chi-square dis-
tribution statistic (χ2) and probability level (p) computed for each
of three tests are summarized in Table 6. Because the comparison of
the full model with a model that excluded the CM factor produced a
nonsignificant difference, [χ2ð1Þ ¼ 3.14, p ¼ 0.076], one can con-
clude that the CM factor has a nonsignificant impact on the RMSE

values. The only fixed factor that produced a significant difference
was FG [χ2ð1Þ ¼ 6.27, p ¼ 0.012]. Overall, results mean that
without calibration, the proposed approximate model infiltration
represents van Genuchten and Brooks-Corey soils with similar
accuracy, independently of the computational method, but that pre-
dictions are more accurate for the narrow than the wide furrow used
in these tests.

εRðtÞ relationships were developed for all of these examples (not
illustrated). In all cases, method ZE3 produced a more linear rela-
tionship than method ZE2, while the latter method occasionally
produced relationships with a negative slopes, as in Fig. 4. Never-
theless, and as shown by Fig. 5 and the results of the statistical
analysis, both methods ultimately yielded solutions of similar ac-
curacy. Hence, computational inadequacies of the Z2 function, if
any, are being compensated by the E2 function.

As was mentioned earlier, method ZE3 was developed after not-
ing that in some cases method ZE2 slightly underpredicts at short
times, and overpredicts as time increases, and that under those con-
ditions, calibration may not improve results much. In those cases
method ZE3 tends to shift the infiltration curve upward, and make
the error negative at both short and long times. This effect is illus-
trated with Fig. 6. The left-hand side plot compares the HYDRUS
and ZE2 solutions computed for test S7-H3, while the right com-
pares the HYDRUS and ZE3 solutions for the same test. While this
shifting of the curve increases the magnitude of errors at long times
prior to calibration, it improves the accuracy of predictions with
ZE3 in comparison with ZE2 after calibration, as will be demon-
strated in the following section.

Scenarios S11 and S12 represent the same soil, as do scenarios
S13 and S14. As explained in the “Methodology” section, these
pairs of scenarios were included to compare infiltration computed
with the Richards equation and with the approximate model under

Table 4. Linear Mixed Analysis for RMSE Values Computed with the
Uncalibrated ZE2 and ZE3 Computational Methods: Random Effects

Groups SD (cm2)

Soil 14.97
Hyd 3.05
Residual 7.72

Table 5. Linear Mixed Model Analysis for RMSE Values Computed with
the Uncalibrated ZE2 and ZE3 Computational Methods: Fixed Effects

Factor Estimate (cm2) Standard error (cm2)

Intercept 14.41 7.14
SHM_vG 13.51 8.27
CM_ZE3 3.02 1.70
FG_W 21.66 8.63

Table 6. Linear Mixed Model Analysis for RMSE Values Computed with
the Uncalibrated ZE2 and ZE3 Computational Methods: Statistical
Significance of Fixed Factors

Excluded factor Chi sq. Pr (> Chi sq:)

SHM 3.003 0.083
CM 3.140 0.076
FG 6.272 0.012a

aStatistically significant.
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Fig. 6. Comparison of the HYDRUS 2D/3D and approximate model
solutions
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the same conditions. In both cases, larger RMSE values were cal-
culated when using vG model than with the BC model. This is in
contrast with the results of the mixed model analysis which indi-
cated no difference on average between RMSE values computed
with for vG and BC soils. In principle, the conversion formulas
of Morel-Seytoux et al. (1996) make the solutions to the Richards
equation in combination with the vG model similar to solutions
generated in combination with the BC model at low water tensions.
Solutions differ, substantially for some soils, because water tension
varies discontinuously at low tensions with the BC model, but con-
tinuously with the vG model. In addition, if the initial condition is
given as a tension, as done in this study, the initial water will likely
not match. Predictions with the approximate model differ solely as
a result of the difference in θ0 because the conversion formulas
yield the same capillary drive hf for the a soil described with either
the vG or BC model. The key point of this discussion is that the
assumed soil hydraulic model will affect the performance of the
uncalibrated approximate model for a particular soil, and that
the resulting calibration parameters will be specific to that soil
and model.

Performance with Calibrated Values of γ

Two different approaches were tested for calibrating γ, in both
cases assuming that γ is independent of hðtÞ. The first approach,
labeled G1, was to develop a γðhÞ function for constant values of h.
For each soil-geometry scenario, I2D time series were simulated
with HYDRUS 2D/3D at selected values of h. All simulations
were conducted for the same infiltration opportunity time, and thus
involved different infiltration amounts. Approximate infiltration re-
sults were then computed with method ZE1 for the same depths.
The approximate results were then fitted to the I2D series using
least-squares and an optimization routine. In the second approach,
labeled G2, a constant γ was derived from one of the I2D series
simulated with variable depth for each soil-geometry scenario.
In all cases, the downstream hydrograph developed for each sce-
nario was used for calibration (e.g., H3 in Fig. 1), as that curve
varied the most with time. As with the first method, least-squares
and optimization were used to fit the approximate solution to the
I2D time series. Separate values of γ were computed for the ZE2
and ZE3 computational methods.

The γðhÞ functions computed for these sets of tests (Fig. 7, solid
symbols) exhibited mostly similar patterns and ranges of variations
as those presented by Bautista et al. (2014b). Exceptions were BC
scenarios 3 and 12, where γ generally exceeded unity in the range
of depths considered. Both cases involve light soils. For other tests,
γðhÞ varied between 0.6 and 1.0, with results suggesting slightly
smaller values for vG soils than for BC soils, and also larger values
for lighter soils and smaller ones for heavier ones. Note that not all
of the γðhÞ functions varied smoothly, for example the functions
computed for Scenarios 1 and 7. This scatter is believed to be
related to numerical artifacts of both the HYDRUS 2D/3D and
HYDRUS 1D simulations.

Fig. 7 also displays the γ values derived from a single infiltration
test with variable ponding depth. Values derived with the ZE2 com-
putational method are shown as open circles and values derived
with ZE3 are represented as open triangles. These results, plotted
at the average value of h, were close to the values computed with
the first calibration procedure. Exceptions were Scenarios 7, 10,
and particularly 12. Again, these differences are believed to be re-
lated to numerical artifacts. γ values derived with both computa-
tional methods were, generally, in close agreement. A noticeable
exception was Scenario 7, which as was noted earlier, exhibited
other anomalies.

Infiltration was computed for each scenario and hydrograph test
using methods ZE2 and ZE3, first in combination with the γðhÞ
function and then using only the constant γ. The latter results in-
clude the test used for calibration. The resulting RMSE values are
summarized again with a boxplot (Fig. 8), with results grouped first
by soil and then by the combined computational-calibration method
(e.g., ZE2G1), identified in what follows simply as computational
method. As in Fig. 5, vG soils are on the left of the graph and BC
soils on the right. RMSE were substantially smaller for these tests
than for those of Fig. 5. Still, results varied substantially among
soils. More importantly, results suggest differences among compu-
tational methods. The average RMSE for each method, is shown in
the legend.

The RMSE values were analyzed using, again, linear mixed
model procedures and the statistical model Eq. (28) (Tables 7–9).
Calibration reduced the contribution of both random effects,
soil and hydrograph (Table 7). Hence, and in contrast with the re-
sults of Table 4, the SD of soil for the calibrated computational
methods was about two-thirds of the value for the residuals while
the SD of hydrographs was only about one-tenth. Likewise, cali-
bration generally reduced the differences between categories of
each fixed factor (Table 8 versus Table 5), as indicated by the
absolute magnitude of the estimated slopes. The exception was
method ZE3G2, which reduced the RMSE by 8.4 cm2 in relation
to method ZE2G1. This supports the earlier observation of potential
differences in RMSE values computed as a function of the CM
factor.

Such differences were examined, first, using the likelihood ratio
test. As before, the analysis involves comparing Eq. (28) with a
simpler model that excludes a fixed factor, one at a time. CM (com-
putational method) was the only factor that produced significant
differences [χ2ð3Þ ¼ 32.29, p ¼ 4.55E-07] (Table 9). Given this
result, a multiple comparison test was conducted to determine
the significance of differences among computational methods.
Bates (2010) outlines several procedures that can be followed to
make such multiple comparisons. In cases involving a single fixed
and random factor, one approach is to treat the random factor as a
fixed factor, i.e., as a blocking factor. A conventional analysis of
variance, in combination with a comparison of treatments using
Tukey’s method, is used in that case. However, application of such
an approach would require eliminating hydrographs as a random
variable from the analysis. A test was conducted to compare of
Eq. (28) against a model that used soil as the only random factor
and computational method as the only fixed factor. The test pro-
duced a nonsignificant difference, meaning that the variation in
RMSE values can be explained by soil and computational method
alone. Hence, an analysis of variance was conducted using the
analysis-of-variance function of R, aov, using soil as a blocking
factor (Bates 2010). These results were then used to compare
the four computational methods using Tukey’s significant differ-
ence method, as implemented in R. This procedure calculates
the 95% confidence interval for all comparisons. That interval is
given as Lower and Upper Bound in Table 10. An interval contain-
ing zero implies a nonsignificant difference. Because all compar-
isons involving method ZE3G2 do not contain zero, those
differences are significant.

Overall, these results show that the approximate model can
match the HYDRUS 2D/3D predictions with excellent accuracy,
if properly calibrated, but that the accuracy of results will vary de-
pending on soil and calibration method. Of the four combinations
of computational and calibration method, ZE3G2 yielded the clos-
est approximation to the HYDRUS 2D/3D results, with an average
RMSE of 7.4 cm2. Results indicate that whether using method ZE2
or ZE3, γ can be calibrated using a representative hydrograph
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with variable depth (G2), under the assumption that such a value is
constant for the expected range of depth variations.

Discussion

An important challenge to the use of the approximate furrow
infiltration model will be the source of the soil hydraulic data.
Two categories of data sources can be considered. In one case,
the data will come from published reports, pedotransfer functions,
or laboratory measurements. In those cases, the user will likely ex-
pect the approximate model to replicate as closely as possible the
solution obtained with the two-dimensional Richards equation.

Calibration will be needed to ensure the accuracy of predictions
for the particular soil and geometric configuration. Under these
conditions, the recommended computational approach is using
ZE3 [Eqs. (23)–(25)].

Because soil hydraulic data are difficult to measure and validate
at the scale of a field, a more likely scenario is that the parameters
will be fitted from irrigation evaluation data, as is currently done
with empirical infiltration formulations. Because the analysis of the
previous section has shown that a constant γ can be assumed for
particular soil and geometry conditions, and range of ponding
depth variations, no special procedures will be needed to determine
γ. That parameter will be embedded in the value of the estimated
parameters, most likely in the value of Ks. Under these conditions,
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Fig. 7. γðhÞ functions developed at constant values of h (solid symbols), and γ values developed from a hydrograph with variable h (open
symbols)
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there is probably no reason to recommend method ZE3 over ZE2
[Eqs. (14)–(20)], especially because the latter is guaranteed to pro-
duce a monotnically increasing infiltration function.

There are other features that need to be added to the model to
make it more generally useful. An important limitation of physically-
based infiltration models is their ability to properly represent the ini-
tial wetting, when infiltration may be dominated by flow through
cracks and macropores. This near-instantaneous infiltration causes
the infiltration function versus time function to exhibit very rapid

changes in slope at short times, which cannot be adequately de-
scribed by the Richards equation (or the Green-Ampt model, if using
a semiempirical modeling approach). Several empirical or semiem-
pirical approaches have been proposed for dealing with this initial
infiltration (Corwin et al. 1991; Ahuja et al. 1993; Clemmens and
Bautista 2009). The model does not currently account for variations
in texture along the soil profile or for merging wetting bulbs of
neighboring furrows. These issues require further investigation.

Conclusions

The approximate furrow infiltration formulation of Warrick et al.
(2007) has been modified to account for time-variable pressure
(flow depth) at the infiltrating surface. Two numerical formulations
were tested along with two methods for deriving the calibration
parameter. The modified equation matches infiltration predicted
with the two-dimensional Richards equation with reasonable accu-
racy, especially when using a formulation that incorporates wetted
perimeter and flow depth effects using running averages in combi-
nation with a calibration parameter derived from a representative
hydrograph with variable ponding depth. Results indicate that
the calibration parameter γ under variable ponding depth is of sim-
ilar magnitude as the value derived assuming a constant flow depth.
Given the potential uncertainty in determining this parameter under
variable depth conditions, the predicted performance of furrow
irrigation systems does not appear to be critically sensitive to this
parameter, especially when considering the uncertainty of other
inputs.
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Fig. 8. Boxplot of RMSE values computed with the calibrated computational methods. van Genuchten soils are shown on the left and Brooks-Corey
soils on the right side of the graph

Table 7. Linear Mixed Analysis for RMSE Values Computed with the
Calibrated ZE2 and ZE3 Computational Methods: Random Effects

Groups SD (cm2)

Soil 4.495
Hyd 0.761
Residual 6.732

Table 8. Linear Mixed Analysis for RMSE Values Computed with the
Calibrated ZE2 and ZE3 Computational Methods: Fixed Effects

Factor Estimate (cm2) Standard error (cm2)

Intercept 18.94 2.42
SHM_vG −4.45 2.65
CM_ZE2G2 −2.65 1.47
CM_ZE3G1 −2.63 1.47
CM_ZE3G2 −8.44 1.47
FG_W −2.44 2.76

Table 9. Linear Mixed Model Analysis for RMSE Values Computed
with the Calibrated ZE2 and ZE3 Computational Methods: Statistical
Significance of Fixed Factors

Excluded factor Chi-sq. Pr (>Chi sq:)

SHM 3.178 0.075
CM 32.287 4.550 × 10−7a
FG 0.951 0.330
aStatistically significant.

Table 10. Results of Tukey’s Significant Difference Test for Differences
between Calibrated Computational Methods

Comparison
Difference
(cm2)

Lower
bound (cm2)

Upper
bound (cm2) p adj

ZE2G2-ZE2G1 −2.646 −6.480 1.189 0.2809
ZE3G1-ZE2G1 −2.627 −6.462 1.207 0.2870
ZE3G2-ZE2G1 −8.439 −12.273 −4.604 0.0001
ZE3G1-ZE2G2 0.018 −3.816 3.853 1.0000
ZE3G2-ZE2G2 −5.793 −9.627 −1.958 0.0008
ZE3G2-ZE3G1 −5.811 −9.646 −1.977 0.0007
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Notation

The following symbols are used in this paper:
B0 = furrow bottom width (L);
E = estimator of the edge effect ε;
h = water ponding depth (water pressure at the soil surface)

(L);
h1D = ponding depth used for I1D calculations;
hf = soil water pressure head at the wetting front (L);
hW = wetted perimeter averaged depth (L);
hWr = running average wetted perimeter averaged depth;
I1D = cumulative one-dimensional cumulative infiltration (L);
I2D = cumulative infiltration volume per unit length of furrow

(L2);
KðhÞ = hydraulic conductivity (L=T);
Ks = saturated hydraulic conductivity (L=T);
S = soil sorptivity (L=T0.5);

SS = furrow side slope (L=L);
t = time at which infiltration is calculated (T);

W = wetted perimeter (L);
W� = empirical adjusted wetted perimeter;
Wa = wetted perimeter averaged over a time step;
Wr = running average of the wetted perimeter;
Z = estimator of the one-dimensional infiltration contribution

to I2D;
γ = empirical parameter (−);
ε = edge effect, the difference between I2D and Z;
εr = relative edge effect;
θ0 = initial water content (−); and
θS = saturated water content (−).
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